1 stepped pressure equilibrium code : sw02aa

Contents

1	step	oped pressure equilibrium code: sw02aa	1
	1.1	outline	1
	1.2	spectral width	1
	1.3	tangential variations	1
	1.4	extremizing condition	1
	1.5	comments	2

1.1 outline

1. Compute spectral-width extremizing condition.

1.2 spectral width

- 1. The geometry of an interface is described by two functions, $R = \sum_j R_j \cos(m_j \theta n_j \zeta)$ and $Z = \sum_j Z_j \sin(m_j \theta n_j \zeta)$. (See global and co01a for more details.)
- 2. The spectral width is defined

$$M = \frac{1}{2} \sum_{j} (m_j^p + n_j^q) \left(R_j^2 + Z_j^2 \right). \tag{1}$$

where $p \equiv \text{pwidth}$, $q \equiv \text{qwidth}$ are positive integers given on input, and $m_j^p = 0$ for $m_j = 0$, $n_j^q = 0$ for $n_j = 0$.

1.3 tangential variations

1. We seek to extremize the spectral width without changing the geometry of the interface. Accordingly, we restrict attention to tangential variations, i.e. variations of the form

$$\delta R = R_{\theta} \, \delta u, \tag{2}$$

$$\delta Z = Z_{\theta} \, \delta u. \tag{3}$$

- 2. To preserve stellar ator symmetry, we consider $\delta u = \sum_k u_k \sin(m_k \theta - n_k \zeta)$.
- 3. The variations in the Fourier harmonics of R and Z are given by

$$\delta R_j = \oint \oint d\theta d\zeta \ R_\theta \ \delta u \ \cos(m_j \theta - n_j \zeta), \tag{4}$$

$$\delta Z_j = \oint \oint d\theta d\zeta \ Z_\theta \ \delta u \ \sin(m_j \theta - n_j \zeta), \tag{5}$$

4. The first variation in M as

$$\delta M = \oint \!\! \oint \! d\theta d\zeta \ (R_{\theta} X + Z_{\theta} Y) \, \delta u, \tag{6}$$

where $X = \sum_{j} (m_j^p + n_j^q) R_j \cos(m_j \theta - n_j \zeta)$ and $Y = \sum_{j} (m_j^p + n_j^q) Z_j \sin(m_j \theta - n_j \zeta)$

1.4 extremizing condition

1. The condition that $\delta M = 0$ for arbitrary δu is

$$I \equiv R_{\theta} X + Z_{\theta} Y = 0. \tag{7}$$

2. The derivatives of M with respect to the u_k are given

$$\frac{\partial M}{\partial u_k} = \oint \oint d\theta d\zeta \ (R_\theta X + Z_\theta Y) \sin(m_k \theta - n_k \zeta). \tag{8}$$

These quantities are provided by an fast Fourier transform of I, which is computed in cb02aa.

1.5 comments

1. For pwidth= 2, and ignoring the n^q term, we see [1] that $X \equiv -R_{\theta\theta}$ and $Y \equiv -Z_{\theta\theta}$, and the extremizing condition reduces to $R_{\theta}R_{\theta\theta} + Z_{\theta}Z_{\theta\theta} = 0$, which is equivalent to the equal arc length condition, $R_{\theta}^2 + Z_{\theta}^2 = const$.

 ${\rm sw}02{\rm aa.h}$ last modified on 2012-12-18 ;

[1] S. P. Hirshman and J. Breslau. Explicit spectrally optimized fourier series for nested magnetic surfaces. Phys. Plasmas, 5(7), 1998.